
Generating MPEG-21 BSDL Descriptions Using Context-Related Attributes

Davy De Schrijver1, Wesley De Neve1, Koen De Wolf1, and Rik Van de Walle2

Department of Electronics and Information Systems - Multimedia Lab
1Ghent University - IBBT

2Ghent University - IBBT - IMEC
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Phone: +32 9 331 49 56
email: {davy.deschrijver;wesley.deneve;koen.dewolf;rik.vandewalle}@ugent.be

Abstract

In order to efficiently deal with the heterogeneity in the
current and future multimedia ecosystem, it is necessary
that content can be adapted in a format-agnostic manner. A
first step toward a solution, able to fulfill the just mentioned
requirement, is to rely on a scalable video codec and to de-
scribe the high-level structure of the resulting bitstreams in
such a way that every terminal can understand it, in partic-
ular by using XML. This paper describes how such descrip-
tions can be generated by making use of the media format
independent BintoBSD tool of the MPEG-21 BSDL stan-
dard. However, regarding the current status of BSDL, it is
impossible to create a description in real time and to keep
the generation speed constant over the complete sequence.
In this paper, we describe a number of extensions and al-
gorithmic modifications that make it possible to generate
a description of a bitstream in real time and at a constant
speed. Our approach results in a significant reduction of
the original execution times (up to 99% for the H.264/AVC
coding format) and in a constant memory usage.

1 Introduction

The current multimedia ecosystem consists of terminals,
networks, and users that are having dissimilar characteris-
tics with regard to the consumption of multimedia content.
This results in a need for scalable content in order to tackle
this heterogeneity. However, scalable coding alone is not
sufficient for creating a framework for Universal Multime-
dia Access (UMA, [8]), giving content providers the op-
portunity to create content once and to publish it to every
possible device, at any given time. One also needs a con-
tent adaptation system. A format-agnostic architecture is
the main topic of this paper. To be more specific, we will

have a look at a system that allows us to describe the high-
level structure of bitstreams in XML (eXtensible Markup
Language); in particular, by making use of the MPEG-21
BSDL (Bitstream Syntax Description Language) standard.
This standard specifies how XML-based bitstream structure
descriptions can be generated in an interoperable way and
how a bitstream can be reconstructed from an adapted high-
level description in an interoperable way. However, the cur-
rent BSDL reference software, in particular version 1.2.1,
is characterized by a decreasing generation speed and an in-
creasing memory usage during the generation of a descrip-
tion, resulting in unacceptable execution times. For exam-
ple, to describe a video stream of 13 seconds encoded by an
H.264/AVC codec, the BSDL software needs 20 minutes to
generate the bitstream description in XML. This is of course
unacceptable. The proposal discussed in this paper solves
these problems by adding a few extensions to the BSDL
standard, and making it possible to generate real time video
bitstream descriptions in BSDL for the first time.

The outline of the paper is as follows: in Section 2, we
discuss how a bitstream structure description can be gener-
ated by relying on the BSDL standard. We also provide a
performance analysis of the current reference software, as
well as a number of requirements that have to be satisfied to
make BSDL usable in practical situations. In Section 3, an
overview is given with regard to our solution for the prob-
lems as mentioned in Section 2. We introduce a few new
BSDL extensions and discuss how these extensions can be
used. We also look at the algorithmic modifications that
have to be applied to the BSDL software. The performance
of our new algorithm is compared with the performance of
the old algorithm in Section 4 and a discussion of the ob-
tained results is provided as well. Section 5 concludes this
paper.

2 Analysis of the bitstream description gen-
eration process

2.1 Bitstream Syntax Description Language

The Bitstream Syntax Description Language (BSDL) is
part of the bigger Digital Item Adaptation standard (DIA)
of MPEG-21 [2]. DIA defines mechanisms for the adap-
tation of a Digital Item and the resources that the Digi-
tal Item contains. The goal of DIA is to obtain an inter-
operable transparent multimedia access framework, taking
into account the network, terminal and user characteristics.
Therefore, it is necessary to describe a bitstream in a stan-
dardized manner such that every device in this framework
can adapt the content in a transparent way. To realize this
scenario, BSDL defines a framework that enables the de-
scription of the high-level structure of a bitstream in XML.
By a high-level description, we mean that a bitstream is de-
scribed for example on a frame-per-frame basis and not on
a bit-per-bit basis. Based on these Bitstream Syntax De-
scriptions (BSDs), an adaptation can be executed. In Fig-
ure 1, the global operating procedure of the BSDL frame-
work is given. As one can see in the figure, we start from

Original
Bitstream BintoBSD XML Bitstream

Description

Transformation

Adapted XML
Bitstream DescriptionBSDtoBin

BSDL
Schema

Adapted
Bitstream

Figure 1. BSDL Framework

a given bitstream (preferably a scalable one) that is en-
coded with a certain codec. Dependent on the codec used,
a BSDL schema is developed that represents the high-level
structure of possible bitstreams generated by the codec in
question. The structure of a BSDL schema is standardized
in the MPEG-21 DIA specification [1] together with the
functioning of the BintoBSD tool. Every MPEG-21 DIA
compatible terminal can generate a BSD from a bitstream
once the schema is known. At the moment that we have
the bitstream description in XML, it is possible to adapt
the description. This adaptation can use the characteristics
from the network or terminal to steer the XML transfor-
mation. How the transformation has to be realized is not
specified in the standard and it is up to the implementer
of the framework. One can for example use of eXtensible
Stylesheet Language Transformations (XSLT, [7]); Stream-

ing Transformations for XML (STX, [3]) or an implemen-
tation based on an XML API (such as Simple API for XML,
SAX, or Document Object Model, DOM). The final step in
the framework is the regeneration of the adapted bitstream.
Therefore, the BSDtoBin tool is needed, taking as input the
adapted description, the BSDL schema and mostly the orig-
inal bitstream. The functioning of this tool is also standard-
ized within the DIA standard.
This implies that a BSDL framework consists of three (soft-
ware) implementations: the BintoBSD tool to generate a de-
scription; the transformation to execute the adaptation of the
XML description; and finally the regeneration of an adapted
bitstream by means of the BSDtoBin tool. In this paper,
attention is paid to the BintoBSD tool because the current
version has problems in terms of unacceptable high execu-
tion times and memory consumption. Therefore, this paper
presents some extensions and algorithmic modifications on
the BSDL specification, solving the detected problems. The
other two tools contain less problematical issues and are al-
ready discussed in other papers such as [6], [4], or [5].

As already mentioned, the MPEG-21 DIA standard
defines how a BSDL schema has to be constructed by using
the standardized BSD Language and how the BintoBSD and
BSDtoBin tools have to work in an MPEG-21 DIA compli-
ant terminal. BSDL is based on some restrictions to W3C
XML Schema (only a limited number of data types is incor-
porated in BSDL) and on some extensions to W3C XML
Schema. These extensions introduce new datatypes such
as bs1:byteRange (which consists of two non-negative
integers whereby the first one refers to a startbyte in the
bitstream and the second one represents the length of the
range); bs2:length (which gives the parser an indication
on how many bytes to read); et cetera. Another extension is
the introduction of new attributes such as bs1:ignore
(which indicates that parsers have to ignore this element
during the process);bs2:nOccurs (which specifies the
number of occurrences of an XML particle); bs2:if (this
makes it possible to make a particle conditional in a BSDL
schema); et cetera. It is important to note that most of the
BSDL-specific attributes will contain an XPath expression
that has to be evaluated in order to obtain the value of the at-
tribute. This evaluation should be done by the BSDL parsers
(in particular, by the BintoBSD parser; the BSDtoBin parser
does not need this information to generate the correct bit-
stream from a given description).

2.2 Performance of the description generation
process

The functioning of the BintoBSD tool is the core topic
of this paper. In the specification, one can find an expla-
nation on how the tool has to work. The first step is the
read in of the BSDL schema and the generation of an inter-

nal structure of this schema. An iterative process will tra-
verse the structure to generate the desired description. The
BSDL schema contains the bs2:rootElement attribute,
which gives the parser an indication about what element to
use to start the parsing process with. Once this process is
started, the description is generated. In this second step,
every time that the parser reads a chunk from the bitstream
(as indicated by the internal structure of the schema) the
corresponding element will be written to the description.
This can be a file or another stream such as a URL connec-
tion in case of a streaming application. As we have already
mentioned, certain BSDL attributes contain an XPath ex-
pression that has to be evaluated in order to know the value
of the attribute. To give a parser the opportunity to evaluate
an arbitrary XPath expression, an internal representation of
the already generated description has to be kept in memory
(for example in a DOM tree). That means that every ele-
ment that is created and sent to the output stream, must also
be kept in the internal representation. For every evaluation
of an XPath expression that is needed, this internal descrip-
tion will be used.
A discussion concerning the performance of the BintoBSD
tool can be found in Section 4.2. In the second column
of Table 3, one can see the unacceptable high execution
times of the software that implements the above algorithm
of the BintoBSD tool (as implemented in version 1.2.1 of
the MPEG-21 DIA reference software). To understand why
these times are so high, we provide a profiling diagram of
the software in Figure 2 to give an idea where most of the
time is spent during the execution of the tool. This figure

Hot spots

Session: BSDLImplementation.jpx

Time of export: Tuesday, May 17, 2005 10:00:30 AM CEST

JVM time: 48:12

Thread selection: All thread groups

Thread status: Runnable

Filtered classes: show separately

 Method Inherent time Invocations

com.sun.org.apache.xpath.internal.XPathAPI.eval 2.438 s (94 %) 13.277

org.iso.mpeg.mpeg21.dia.bsdl.XSD.datatypes.AllBinary.readBufFromBitstream 25 s (0 %) 191

org.iso.mpeg.mpeg21.dia.bsdl.utils.ByteArray.<init> 16 s (0 %) 844.909

org.iso.mpeg.mpeg21.dia.bsdl.utils.ByteArray.isEqual 16 s (0 %) 1.689.045

org.iso.mpeg.mpeg21.dia.bsdl.io.BufferedPosInputStream.read 10 s (0 %) 1.689.239

org.iso.mpeg.mpeg21.dia.bsdl.io.BufferedPosInputStream.readAndReset 10 s (0 %) 844.909

org.iso.mpeg.mpeg21.dia.bsdl.utils.ByteArray.size 10 s (0 %) 3.380.018

java.io.BufferedInputStream.read 9.317 ms (0 %) 1.689.239

org.iso.mpeg.mpeg21.dia.bsdl.io.InputBitstream.mark 5.197 ms (0 %) 844.909

org.iso.mpeg.mpeg21.dia.bsdl.io.BufferedPosInputStream.reset 5.192 ms (0 %) 844.909

org.iso.mpeg.mpeg21.dia.bsdl.io.InputBitstream.reset 5.180 ms (0 %) 844.909

org.iso.mpeg.mpeg21.dia.bsdl.io.BufferedPosInputStream.mark 5.142 ms (0 %) 844.909

java.lang.Class.getField 5.018 ms (0 %) 75.680

java.io.BufferedInputStream.reset 3.009 ms (0 %) 844.909

java.io.BufferedInputStream.mark 2.914 ms (0 %) 844.909

java.lang.Object.<init> 2.793 ms (0 %) 876.383

java.io.PrintStream.println 2.302 ms (0 %) 7.797

Page 1 of 1Hot spots

8/06/2005file://Y:\Doctoraat\uitlegContextgebaseerdeBitstroombeschrijvingen\Resultaten\ProfileInformation\hotSpotsRefSoftware.html
Figure 2. Profiling information of the Binto-
BSD tool as implemented by the reference
software

is generated by JProfiler1 3.3.1 and as one can see in this
figure, almost all time is spent to the evaluation of the XPath
expressions. This means that these expressions have to be
evaluated faster to obtain acceptable execution times. This
paper provides a solution for this problem, in particular how
the XPath expressions can be evaluated very fast in the con-
text of the BSDL framework.

1Java Profiler, JProfiler, can be found on http://www.jprofiler.com/

2.3 Applicability of BSDL

In the literature, one can find several BSDL schemata
for bitstreams generated from different codecs. In [6],
a BSDL schema is described for the experimental scal-
able MC-EZBC codec and in [4] the same is done for the
new standardized H.264/MPEG-4 Advanced Video Coding
specification (commonly referred as H.264/AVC). In these
papers, one can find that the generation time of a BSD is
unacceptably high when the reference software is used as
implementation of the BintoBSD tool. Together with the
fact that the speed decreases when the sequence is longer,
we should conclude that, at the moment, BSDL is unusable
under these circumstances.
In order to be able to apply BSDL in future multimedia
frameworks, we have formulated a number of requirements,
hereby targeting two types of applications. The first area
contains applications whereby the bitstream is saved for a
long time (typical applications are streaming scenarios of
stored content such as Video on Demand (VoD)). In these
applications, the encoding times of the bitstream and gen-
eration times of the corresponding descriptions are less im-
portant. There are no hard real time constraints as long as
the times are acceptable and that the times are having a con-
stant speed over the complete sequence (independent of the
length of the sequence). A second field of application con-
tains hard real time requisites, in particular, live content cre-
ation and streaming. Examples of applications that belong
to this field are video conferences and live TV broadcasting.
To make it possible to do an adaptation in this application
field by using the BSDL framework, it is necessary to en-
code the bitstream and to generate the description in real
time.
We want that BSDL is usable in both above areas of appli-
cations. Therefore, we assume the following requirements:

• It has to be possible to generate a BSDL description in
real time.

• The execution times to generate a description should
be in proportion to the length of the corresponding se-
quence. That means that the speed, by which the de-
scription is generated, has to be constant over the com-
plete sequence.

3 Algorithmic optimizations of the BintoBSD
tool

As explained in Section 2.2, it is necessary to evalu-
ate the occurring XPath expressions in the BSDL schema
as fast as possible. An XPath expression can be found
as an argument of the following BSDL specific at-
tributes: bs2:if; bs2:ifUnion; bs2:nOccurs and

bs2:length. The first two attributes expect a boolean
value after the XPath evaluation and the last two expect a
number as return value of the evaluation. A more detailed
explanation of these attributes can be found in [1]. To speed
up the generation of a bitstream description, it is possible to
implement software optimizations but only implementation
optimizations are not enough to obtain the requirements as
formulated in Section 2.3. Therefore, we present an exten-
sion mechanism on top of the BSDL specification in the
following subsections, together with an algorithmic expla-
nation of the modified BintoBSD parser that deals with the
newly introduced extensions.

3.1 Extensions to the BSDL specification

As mentioned earlier, XPath expressions in a BSDL
schema are important parts to realize conditional opera-
tors and loop constructions. Every time the parser meets
an XPath expression that has to be evaluated, the current
generated description has to be known by the XPath eval-
uator. Therefore, the already generated description of the
bitstream must be kept in memory to give the evaluator the
opportunity to use the current context and to evaluate the
XPath expression in a correct manner. Of course, the big-
ger the description is, the longer the evaluation of the ex-
pression will take. Therefore, it is important to keep the
(internal) description tree (for example, a DOM tree), on
which the expression will be evaluated, as small as possi-
ble. A typical bitstream is composed of repetitive construc-
tions, e.g., a video bitstream contains consecutive frames
and the parser needs no information about previous frames
during the parsing process of the current frame. To keep
the internal description context in the memory small, we
have defined four new attributes that can appear in a BSDL
schema. These new attributes describe how the internal
description context has to be managed. The attributes are
steering the BintoBSD tool to manage the memory usage as
efficient as possible and still give the parser the opportunity
to evaluate the XPath expressions in a correct way.

The new BSDL attributes are:

• startContext: this attribute contains a marker as
value. It indicates that the element, to which the
attribute belongs, is needed to evaluate a forthcom-
ing XPath expression. When the element is condi-
tional (in other words when it contains a bs2:if or
a bs2:ifNext attribute), the element will only be
kept in memory after a positive evaluation of the con-
dition. The marker will be used to refer to the element
in a later phase of the parsing process, resulting in the
removal of the referred element out of the internal rep-
resentation (and so out of the system memory).

• partContext: this attribute has the same function as

the startContext attribute but it does not contain a
marker as value. The attribute can have two values,
in particular “Yes” and “No”; the default value of the
attribute is “No”. When the value is “Yes” this means
that the element, to which the attribute belongs, must
be kept in the memory (again only after a positive eval-
uation of a conditional element). Because this attribute
contains no marker, it is not possible to remove this el-
ement separately out of the memory. The element can
only be swapped out the internal representation (and
out of the memory) when an ancestor element is re-
moved. This attribute will typically be used when the
element is necessary in the location step of an XPath
expression. The attribute is useful to keep the mem-
ory manageable without an abundant and meaningless
usage of markers.

• stopContext: this attribute is the counterpart of the
startContext attribute. It contains a list of markers and
the goal of this attribute is to remove redundant el-
ements (and their children) out of the memory. The
markers will be used to identify the elements that have
to be removed. In contrast to the previous attributes,
this attribute is not conditional and it is executed every
time that it appears. It is the responsibility of the mem-
ory manager to keep the context (the internal descrip-
tion representation) manageable; in other words, the
pointer to the current active element should still valid
after the removal operation.

• redefineMarker: the last attribute can be used to re-
name an existing marker. The value is composed of
two markers separated by a dash character (‘-’). The
attribute gives the author of a BSDL schema advanced
control pertaining to the management of the context.
This attribute can be very useful when the context tree
contains a common part. That common part can be
renamed at the moment that the chosen path is deter-
mined. Just like the first two attributes, this attribute is
only interpreted when a conditional element evaluates
positive.

3.2 Development of an example

To give a better idea about the functionality of the at-
tributes introduced in Section 3.1, we will give an exam-
ple of a BSDL schema that contains the new attributes.
In Figure 3, a simplified BSDL schema is given. In
this fragment, only the BSDL elements are given that are
relevant for explaining our extension mechanism. Note,
this schema is not a valid BSDL schema, therefore it is
necessary to include other BSDL or XML schema ele-
ments such as xsd:sequence, xsd:complexType,...
In this example, we have represented the global struc-

<e l e m e n t name=” b i t s t r e a m ” b s 0 : s t a r t C o n t e x t =” b i t s t r e a m ”>
<e l e m e n t name=” h e a d e r ” b s 0 : p a r t C o n t e x t =” Yes ”>

<e l e m e n t name=” h e i g h t ” />
<e l e m e n t name=” wid th ” />
<e l e m e n t name=” c o l o r ” b s 0 : p a r t C o n t e x t =” Yes ” />

</ e l e m e n t>
<e l e m e n t name=” frame ” b s 2 : n O c c u r s =” Unbounded ”

b s 0 : s t a r t C o n t e x t =” f rame ” b s 0 : s t o p C o n t e x t =”
oldFrame ”>

<e l e m e n t name =” t y p e ” b s 0 : s t a r t C o n t e x t =” t y p e ”
b s 0 : r e d e f i n e M a r k e r =” f rame − oldFrame ” />

<e l e m e n t name=” i f T y p e I s 1 ” b s 2 : i f =” . / t y p e = 1 ”
b s 0 : s t o p C o n t e x t =” t y p e ” />

<e l e m e n t name=” i f C o l o r I s G r a y s c a l e ” b s 0 : i f =” /
b i t s t r e a m / h e a d e r / c o l o r = 2 ” />

<e l e m e n t name=” s t r e a m ” b s 0 : s t a r t C o n t e x t =” s t r e a m ”>
<e l e m e n t name=” l e n g t h ” b s 0 : p a r t C o n t e x t =” Yes ” />
<e l e m e n t name=” p a y l o a d ” b s 0 : s t o p C o n t e x t =” s t r e a m

” />
</ e l e m e n t>

</ e l e m e n t>
</ e l e m e n t>

Figure 3. Simplified BSDL-schema example

ture of a video codec containing a header with some
global information about the video sequence followed
by a number of frame structures, indicated by the
bs2:nOccurs="Unbounded" attribute. Each frame is
composed of the same syntax elements as one can see. The
conditional elements are indicted by the BSDL bs2:if at-
tribute. The color element of the header is kept in mem-
ory during the complete parsing process, as one can see in
the schema. It is indicated by the bs0:partContext at-
tribute. The frame elements are removed every time a frame
structure is parsed. A frame element is stored in mem-
ory by interpreting the bs0:startContext attribute
and the marker is used as reference. At the same parsing
time, the previous parsed frame is removed (indicated by
the bs0:stopContext attribute). The bs0:redefineMarker at-
tribute controls the frame that has to be removed next time.
In Figure 4, the internal representation of the description is
given when the context-related attributes of the example in
Figure 3 are eliminated. That is an equivalent representation
as the description that the BintoBSD tool generates and it is
the internal representation that the reference software uses.
As one can see, the longer the video sequence, the bigger
the internal representation and the slower the evaluation of
the XPath expressions will be. In this figure, the conditional
elements are mentioned by a dashed bounding box.
In Figure 5 (a), the internal representation of the context is
given after every complete parsing process of a frame by us-
ing the context-related attributes of the BSDL schema. As
one can see, almost nothing (only the header information) is
kept in the memory. In Figure 5 (b), the internal context is
given just before the payload element is parsed. As one can
see, also during the parsing process of a frame, the internal
context is smaller than in Figure 4, which has to speed up
the evaluation process of the XPath expressions.

bitstream

header

color

frame

stream

length

width

height

typeA

ifColor

type

payload

= Conditional element

= Normal element

frame

stream

length

typeA

ifColor

type

payload

…

…

Figure 4. Internal representation of the de-
scription without using context-related at-
tributes

bitstream

header

color

frame

stream

length

bitstream

header

color

(a) (b)

Figure 5. Internal representation of the de-
scription by using context attributes: (a) in-
ternal description after each frame is parsed;
(b) internal description before the payload ele-
ment is parsed

3.3 Algorithm of the modified BintoBSD parser

In Section 3.1, we have introduced the new developed
BSDL attributes and in Section 3.2, the impact of these new
attributes is explained by using an example on how the in-
ternal context evolves. In this subsection, we explain how
the BintoBSD tool has to be modified to interpret the new
attributes and to manage the memory as efficient as possi-
ble.
The algorithm is given in pseudo-code in Figure 6. In this
code, we describe only how the memory manager must
deal with the new attributes. In the code, the data struc-
ture internal_tree contains the context on which the
XPath expressions have to be evaluated; lookup_table
is a map, which maps a key (marker) to a value (in par-
ticular, a context element) and deleted_table is a
vector with several references to context elements. The
current_pointer refers to the active element in the
context tree. It is the place from where the evaluations of
the XPath expressions must start. As one can see in Fig-
ure 6, an element can only be removed from the context
tree under the condition that the current_pointer is
not an element of the removing part of context.

f o r each e l e m e n t i n t h e BSDL schema do
i f (e l e m e n t i s a b e g i n E l e m e n t) do

i f (! (e l e m e n t i s c o n d i t i o n a l) OR ((e l e m e n t i s
c o n d i t i o n a l) AND (e v a l u a t i o n i s t r u e)))) do

i f (e l e m e n t i s s t a r t C o n t e x t) do
add e l e m e n t t o i n t e r n a l t r e e a t

c u r r e n t p o i n t e r
c u r r e n t p o i n t e r = newElement
add marker and r e f e r e n c e t o l o o k u p t a b l e

end i f
i f (e l e m e n t i s p a r t C o n t e x t) do

add e l e m e n t t o i n t e r n a l t r e e a t
c u r r e n t p o i n t e r

c u r r e n t p o i n t e r = newElement
end i f
i f (e l e m e n t i s r e d e f i n e M a r k e r) do

o l d r e f e r e n c e = f i n d marker i n l o o k u p t a b l e
remove marker and r e f e r e n c e from

l o o k u p t a b l e
add new marker and o l d r e f e r e n c e t o

l o o k u p t a b l e
end i f

end i f
i f (e l e m e n t i s s t o p C o n t e x t) do

r e f e r e n c e = f i n d marker i n l o o k u p t a b l e
remove marker and r e f e r e n c e from l o o k u p t a b l e
i f (c u r r e n t p o i n t e r i s t h e same as o r c h i l d

from r e f e r e n c e) do
keep r e f e r e n c e i n i n t e r n a l t r e e
add r e f e r e n c e t o d e l e t e d t a b l e

e l s e
remove r e f e r e n c e from i n t e r n a l t r e e

end i f
end i f

end i f
e l s e i f ((e l e m e n t i s an endElement) AND ((e l e m e n t i s

s t a r t C o n t e x t) OR (e l e m e n t i s p a r t C o n t e x t)) do
i f (c u r r e n t p o i n t e r e l e m e n t o f d e l e t e d t a b l e) do

temp = p a r e n t o f c u r r e n t p o i n t e r
remove c u r r e n t p o i n t e r from i n t e r n a l t r e e
remove c u r r e n t p o i n t e r from d e l e t e d t a b l e
c u r r e n t p o i n t e r = temp

e l s e
c u r r e n t p o i n t e r = p a r e n t o f c u r r e n t p o i n t e r

end i f
end i f

end f o r

Figure 6. Pseudo-code of the modifications of
the memory manager of the BintoBSD tool

4 Performance analysis of the modified
parser

In this section, we discuss the impact of our new intro-
duced attributes in terms of execution times.

4.1 Materials and methods

To test the performance of our new algorithm, we
have extended two different BSDL schemata with our new
context-related attributes. The first BSDL schema is a
schema for the MC-EZBC codec, the structure of the
schema is described in [6]. The codec is an experimen-
tal embedded scalable wavelet-based codec. The second
schema is developed for the H.264/AVC codec, the struc-

ture of this schema is explained in [4]. To describe an en-
coded bitstream in XML by using the BSDL technology, we
have used 4 different bitstreams encoded by the MC-EZBC
codec (version of September 2003) and 11 H.264/AVC bit-
streams created by relying on the JM 9.4 reference software.
The properties of the bitstreams used are given in Table 1.
In this table, the first 4 bitstreams are the MC-EZBC bit-
streams whereby the number of frames is important. The
others 11 bitstreams are the H.264/AVC streams and hereby,
the number of slices is more important. This is because in
the H.264/AVC specification, the slices are the fundamental
building blocks of a bitstream and not the frames.

Table 1. Characteristics of used bitstreams
Name #frames #slices /

frame
Total
#slices

Bitstream
Size (bytes)

ezbc 040 40 n/a n/a 2425432
ezbc 121 121 n/a n/a 6474100
ezbc 300 300 n/a n/a 14357852
ezbc 541 541 n/a n/a 33349445
avc 21 1 21 1 21 89644
avc 21 2 21 2 42 89285
avc 49 1 49 1 49 205217
avc 21 3 21 3 63 89721
avc 199 1 199 1 199 833478
avc 199 2 199 2 398 8333882
avc 399 1 399 1 399 1676736
avc 199 3 199 3 597 834110
avc 599 1 599 1 599 2531328
avc 599 2 599 2 1198 2530329
avc 599 3 599 3 1797 2530286

To execute our tests, we have used version 1.2.1 of the
MPEG-21 BSDL reference software. Our algorithm, as dis-
cussed in Section 3.3, was integrated into the BintoBSD
tool of the reference software. We have compared our im-
plementation of the BintoBSD tool with version 1.2.1 of
the reference software and for each generation of a descrip-
tion of a bitstream, we have measured the execution time
5 times. The tables in the following subsection contain the
average over the 5 runs.

All the simulations were run on a PC having an Intel
Pentium IV CPU, clocked at 2.8GHz with Hyper-Threading
and having 1GB of RAM at its disposal. The operating sys-
tem used was Windows XP Pro (SP2) and Sun Microsys-
tem’s Java 2 Runtime Environment (Standard Edition ver-
sion 1.5.0 02-b09) was running as JVM.

4.2 Results and discussion

First, we discuss the results for the bitstreams as encoded
by the MC-EZBC codec. The execution times, as measured
by the reference software and our modified BintoBSD tool,
together with speed and ratio are given in Table 2. The
speed is expressed in frames/s and the ratio is calculated

as follows:

ratio = 1− time modified BintoBSD tool

time reference software
(1)

In this table, one can see that our implementation is up to
98% faster than the reference software and that it is possible
to generate the descriptions in real time. The latter was not
possible with an implementation without our modifications.
The ratio also gives us an idea about the profit that we ob-
tain with the introduction of the new BSDL attributes. The
most interesting conclusion that can be drawn from this ta-
ble is given in Figure 7. In particular, the speed by which
the description is generated is constant, or in other words,
the execution time is linear in function of the number of
frames in the sequence (see Figure 7). Note that the speed
is increasing with the length of the sequence, the reason for
this phenomenon is the Just-In-Time (JIT) compiler of the
JVM (the longer the sequence will be, the less the influence
of the JIT compiler will be and the more constant the speed
will be).

Table 2. Results of our simulation for the MC-
EZBC sequences

Name Reference Software Modified BintoBSD Tool Ratio
time (s) speed time (s) speed (%)

ezbc 040 2.48 16.103 0.71 56.2 72
ezbc 121 11.26 10.740 1.04 116.9 91
ezbc 300 48.59 6.174 1.51 198.1 97
ezbc 541 108.97 4.954 1.98 272.9 98

0,00

0,50

1,00

1,50

2,00

2,50

0 100 200 300 400 500 600
Frames

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 7. Execution times of the BintoBSD
tool for the MC-EZBC bitstreams in function
of the number of frames

The same analysis as for the MC-EZBC bitstreams is
done for the H.264/AVC encoded streams. The results
for this configuration are given in Table 3. The ratio
is again calculated as in (1) and the speed is expressed

in slices/s (because the fundamental elements of an
H.264/AVC bitstream are the slices and not the frames, as
already mentioned). In this table, one can see that the ref-
erence software was unacceptable slow and that the intro-
duction of our new elements has run the execution times
drastically down. For the longest sequences, we obtain a
ratio of more than 99%. Only the descriptions for the very
short sequences (the sequences that contain only 20 frames,
which are sequences that are not appear in practical situa-
tions) cannot be generated in real time. The reason for the
low speed in these cases is the fact that every run has a con-
stant startup time. This startup time involves that the BSDL
schema will be loaded and the internal class structure will
be generated together with the influence of the JIT-compiler.
In case of the H.264/AVC schema, the average loading time
of the schema is 0.472s. When bitstreams are longer (in
particular, when the sequence contains more slices), the in-
fluence of this constant startup time will be decreased, as
can be seen in the table. We observe also that the speed
of the reference software decrease as the number of slices
increase (that means that there is no linear connection be-
tween the execution time and the number of parsed slices)
and that the execution time is far from real time.

Table 3. Results of our simulation for the
H.264/AVC sequences

Name Reference Software Modified BintoBSD Tool Ratio
time (s) speed time (s) speed (%)

avc 21 1 8.09 2.595 1.32 15.92 84.0
avc 21 2 18.70 2.246 1.60 26.30 91.5
avc 49 1 22.55 2.172 1.80 27.22 92.0
avc 21 3 34.00 1.853 1.82 34.58 94.6
avc 199 1 281.55 0.707 3.88 51.26 98.6
avc 199 2 1300.00 0.306 5.70 69.79 99.5
avc 399 1 1164.59 0.342 6.57 60.74 99.4
avc 199 3 3300.00 0.181 7.40 80.68 99.8
avc 599 1 3400.00 0.176 9.18 65.28 99.7
avc 599 2 21000.00 0.057 14.45 82.92 99.9
avc 599 3 50000.00 0.036 19.47 92.29 99.9

To visualize the performance of our modified BintoBSD
tool, we have again plotted the execution times of the tool
in function of the number of slices in the sequence. This vi-
sualization is given in Figure 8. One can see that the curve
has a linear course, certainly for the three longest sequences
(in particular, the sequences that contain 599 frames with 1,
2 or 3 slices a frame respectively). This linear connection
indicates an almost constant speed, as also can be seen in
Table 3. The jumps in the graph are a remarkable phenom-
enon in Figure 8. The two jumps have the same origin and
we will explain the cause based on the last jump. The two
measurements of sequences that are responsible for the sec-
ond jump are avc_599_1 and avc_199_3. These se-
quences contains almost as much slices, in particular 599

and 597 slices respectively. Therefore, we should expect
that the execution times are approximately the same but this
is not true as one see in Table 3 and Figure 8. Notwithstand-
ing the fact that the XML descriptions of the bitstreams
(generated by BintoBSD) are having about the same sizes
(1232 Kbytes and 1235 Kbytes, which is not represented in
the tables), which is expectable because the slices are the
fundamental elements of a bitstreams, the times are not the
same. The extra time needed to generate the description
for the avc_599_1 is spending on I/O operations. In Ta-
ble 1, one can see that the avc_599_1 contains three times
more bytes than avc_199_3 and the BintoBSD tool must,
of course, parse the complete bitstream which generates the
extra I/O time for the avc_599_1 sequence, which results
in a the higher execution time as can be seen in Table 3.

0,00

5,00

10,00

15,00

20,00

25,00

0 500 1000 1500 2000
Slices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 8. Execution times of the BintoBSD
tool for the H.264/AVC bitstreams in function
of the number of slices

Finally, we want to verify if our postulated requirements
of Section 2.3 are satisfied. For the MC-EZBC, it is clear
that the generation speed of a description is constant over
the complete sequence and that it is no problem to gener-
ate a description in real time (up to 250 frames / s). The
same conclusion can be made for the complex H.264/AVC
bitstreams. In this situation, the speed is also constant and it
is possible to parse a bitstream in real time (up to 3 slices a
frame for sequences that are long enough, this means in sit-
uations whereby the startup time is almost completely elim-
inated). Therefore, we can conclude that the requirements
are satisfied and we note that the execution times should go
further down after a complete software optimization.

5 Conclusions

In this paper, the MPEG-21 DIA BSDL standard was
discussed. This specification provides a framework for
adapting multimedia content in a transparent and generic
way, hereby making use of XML-based descriptions of the
high-level structure of (scalable) bitstreams. We have pos-
tulated a number of requirements to which the description

generation process has to comply. After having profiled the
current version of the MPEG-21 BSDL reference software,
we could conclude that the requirements in question were
not met and that BSDL could not be used in for exam-
ple streaming use cases. Therefore, we have introduced a
number of extensions to the BSDL standard, giving imple-
mentations of the standard the possibility to evaluate XPath
expressions in a very efficient and fast manner. The algo-
rithmic modifications of the parser were discussed and im-
plemented in version 1.2.1 of the reference software. After
having tested our new algorithm, we could observe that up
to 99% less time was needed to produce the same bitstream
description. This paper also shows for the first time that it is
possible to generate an XML description of an H.264/AVC
bitstream in real time by using BSDL technology.

6 Acknowledgements

The research activities that have been described in this
paper were funded by Ghent University, the Interdiscipli-
nary Institute for Broadband Technology (IBBT), the Insti-
tute for the Promotion of Innovation by Science and Tech-
nology in Flanders (IWT), the Fund for Scientific Research-
Flanders (FWO-Flanders), the Belgian Federal Science Pol-
icy Office (BFSPO), and the European Union.

References

[1] Information technology – Multimedia framework – Part 7:
Digital Item Adaptation. ISO/IEC JTC 1, October 2004.

[2] M. Amielh and S. Devillers. Bitstream Syntax Description
Language: Aplication of XML-Schema to Multimedia Con-
tent Adaptation. WWW2002: The Eleventh International
World Wide Web Conference (Honolulu, Hawaii), May 2002.

[3] P. Cimprich. Streaming Transformations
for XML (STX) Version 1.0 Working draft.
http://stx.sourceforge.net/documents/spec-stx-
20040701.html, July 2004.

[4] W. De Neve, S. Lerouge, P. Lambert, and R. Van de Walle.
A performance evaluation of MPEG-21 BSDL in the context
of H.264/AVC. Proceedings of SPIE annual meeting 2004:
Signal and Image Processing and Sensors, August 2004.

[5] D. De Schrijver. High Level XML Description of a Scalable
Video Codec. Abstracts of the Fifth FTW PhD Symposium,
December 2004.

[6] D. De Schrijver, W. Van Lancker, and R. Van de Walle. Per-
formance Of a Scalable Bitstream Adaptation Process Based
On High Level XML Descriptions. Proceedings of the 6th
WIAMIS Conference, April 2005.

[7] M. Kay. XSLT Programmer’s Reference, 2nd Edition. Wrox
Press Ltd., Birmingham, UK, 2001.

[8] A. Vetro, C. Christopoulos, and T. Ebrahimi. Universal Mul-
timedia Access. IEEE Signal Processing magazine, March
2003.

